
National Conference on Recent Research in Engineering and Technology (NCRRET -2015)

International Journal of Advance Engineering and Research Development (IJAERD)

e-ISSN: 2348 - 4470 , print-ISSN:2348-6406

Conceptual Case Based Approach to Retrieve Java Class Library

M. K. Patil, Dr. P. P. Jamsandekar

Research Student, BVU AKIMSS, Solapur

Professor, BVU IMRDA, Sangli

Abstract:

The CBR system is improved by using clustering algorithm with k – NN algorithm. Cases in the class libraries

are clustered into smaller sub sets. The structure is represented by hierarchical manner. The similarity

approach is examined by comparing the structures of retrieval of class libraries. The class library is

maintained with the class, interface, and packages of JAVA programming language.

WE have proposed a model where each case in the repository is an active case and where a hierarchical

structure provides an organization analogy useful to implement the retrieval mechanisms and rules.

Keywords: class library, clustering, retrieval

Introduction:

Case-based reasoning (Kolodner, 1992) means

using old experiences to understand and solve new

problems. In case-based reasoning, a reasoner

remembers a previous situation similar to the

current one and uses that to solve the new

problem. Case based reasoning can mean adapting

old solutions to meet new demands;

using old cases to explain new situations; using old

cases to critique new solutions; or reasoning from

precedents to interpret a new situation or create an

equitable solution to a new problem. The CBR

(Aamodt, 1994) process can be represented by a

schematic cycle, as shown in

Figure (a). CBR typically as cyclical process

comprising the four REs:

New Case

Case

Base

Cases

Solved Case
Tested

repaired Case

Learned Case

RETRIEVE

R

E

U

S

E

REVISE

Suggested

Solution

Confirmed

Solution

R

E

T

A

I

N

Problem

Figure (a): CBR Cycle

Retrieve the most similar cases; during this

process, the CB reasoner searches the database to

find the most approximate case to the current

situation.

Reuse the cases to attempt to solve the problem;

this process includes using the retrieved case and

adapting it to the new situation. At the end of this

process, the reasoner might propose a solution.

2

Revise the proposed solution if necessary; Since

the proposed solution could be inadequate, this

process can correct the first proposed solution.

Retain the new solution as a part of a new case.

This process enables CBR to learn and create a

new solution and a new case that should be added

to the case base. It should be noted that the

RETRIEVE process in CBR is different from the

process in a database. If you want to query data,

the database only retrieves some data using an

exact matching while a CBR can retrieve data

using an approximate matching.

Case Retrieval

Case retrieval here represents the process of

extracting the cases from the case base, which are

closest to the current case of the initial problem.

To extract similar cases and the best case there

should be some selection criteria which determine

the closeness of the current case to the stored

cases. The case retriever generally searches the

entire case to find the features of that case similar

to the features of the current case however the

entire case does not exists, the portion of a case

matches. The retrieved case can also be modified

by taking solution of another case. There are many

case retrieval techniques to carry out searching

some of them are the k-nearest neighbors (k-NN),

decision trees, and their derivatives. These

techniques use similarity metric that calculate the

closeness among cases.

Nearest-neighbor retrieval

The nearest-neighbor retrieval computes the

similarity by calculating the weights of the features

of the case retrieved with those of the current case.

If the weighted sum of its features that match the

current case is greater than other cases than that

case is retrieved. Features that are considered

important in a problem-solving situation are

weighted heavily in the case-matching process.

Inductive approaches

An inductive approach creates the decision trees.

This may reduce the query search time.

Knowledge-guided approaches

This approaches uses domain knowledge to

determine the features of a case that are important

for retrieving that case in the future. It is also

considered an effective searching approach.

Validated retrieval

Validated retrieval has two phases. First involves

the retrieval of all cases that match the important

features of the current case. Another involves

deriving more discriminating features to match the

current situation from the group of retrieved cases.

(Shiu, 2003)

Limitations of Existing Retrieval Techniques

Nearest-neighbor retrieval and inductive retrieval

both have their strengths and weakness. The

choice of retrieval techniques in CBR applications

requires experience and experimentation. Nearest-

neighbor retrieval is used without any pre

indexing. If retrieval time becomes an important

issue, inductive retrieval is preferable. Nearest-

neighbor retrieval is a simple approach that

computes the similarity between stored cases and

new input case based on weight features.

A typical evaluation function is used to compute

nearest-neighbor matching (Kolodner, 1992)as

Where,

wi is the importance weight of a feature,

sim is the similarity function of features, and

f i
I
and f i

R
 are the values for feature i in the input

and retrieved cases respectively.

Nearest-neighbor retrieval and inductive retrieval

are widely applied in CBR applications and

modules. Table shows the comparison between

nearest-neighbor retrieval and inductive retrieval

Retrieval

Techniques
Strength Weakness

Nearest Neighbour
Retrieval

Simple Slow retrieval speed when the case base is large

Inductive Fast retrieval Depends on pre-indexing which is a time-consuming process

n

i

i

R

i

I

i

n

i

i

RI

w

ffsimw

CaseCasesimilarity

1

1

),(

),(

3

Retrieval speed Impossible to retrieval a case while case data is missing or
unknown

In some CBR modules, both techniques are used:

inductive indexing is used to retrieve a set of

matching cases, and then nearest-neighbor is used

to rank the cases in the set according to the

similarity to the target case.

Work Domain: Java Class Library

The purpose of a case-based retrieval and reuse

module is to help the developer to locate reusable

code and to aid in program understanding and

adaptation. The module matches Java classes from

the class repository (base cases) to the target case

(the class under construction) and then suggests

similarities between them.

It enhances Java’s reusability that it automates,

ensures the quality of program. It will separate the

Java’s components as packages, classes, methods

based on structure of the class and signature.

Furthermore it ensures that the automated retrieval

and adaption strategies will be immediately useful

and work with existing software repositories.

Java Reflection enables Java code to discover

information about the fields, methods and

constructors of loaded classes, and to use reflected

fields, methods and constructors to operate on their

underlying counterparts at runtime (James

Gosling, 1996). This capability allows us to extract

feature descriptions from compiled classes without

having access to the source code.

Java has a set of powerful mechanisms that

directly support software reuse. However, the

developer must have a sufficient knowledge of the

language environment to be able to construct a

mental mapping from existing object classes to the

class that he wishes to construct. Java supports this

to some extent in that it is possible to inherit the

structure and functionality of an existing class and

only specify new behavioral features in the new

object class.

Proposed Work

A CBR system is said to be successful if it designs

an efficient and effective case retrieval

mechanism. K-Nearest Neighbor (KNN) search

method searches the entire case base to retrieve K

prior cases with minimal dissimilarities. One of the

main drawbacks of the CBR is, the dimensionality

problem: the uncontrolled growth of the case bases

may result in the degradation of the performance

of the system as a direct consequence of the

increased cost in accessing memory.

The solutions of similar prior cases can be used to

solve the problem of the new case. And to

discriminate the similar cases from other cases we

can cluster those cases that have similar solution

parts. The Clustering techniques focus our search

to the cluster that has similar case to that of our

problem description. This technique deals with the

Java’s case library.

In the Java programming language the base case

descriptions can be constructed from the software

artifacts themselves using Java reflection.

The case-based reuse module supports retrieval

and reuse of classes based on their signatures

(methods return types and arguments etc.), which

in this case is viewed upon as cases. From these

signatures one may also extract some knowledge

about what kind of component this is. The reuse

component may suggest mappings between

signatures of a retrieved case and the target, and

the user may accept or discard the suggestions. In

addition the reuse module suggests how to reuse a

class, either by extension, or by lexical reuse of

source code (if it is available).

Java’s reflective capabilities are used to extract

case descriptions from compiled Java classes, and

case-based reasoning is applied to support retrieval

and adaptation of reusable components. The

purpose of the module is to localize potentially

reusable code and to support the programmer in

her program understanding and adaptation of the

code.

(Bjørnar Tessem, 1999) It was researched that, the

set of features that can be automatically extracted

utilizing the Java reflective capabilities (e. g.,

method signatures, field types, inheritance

4

information, etc.) can be effectively used to

retrieve components for subsequent reuse. It will

decrease the effort required to retrieve the most

plausible class in program by the developer.

Following figure (b) is a conceptual proposed

work. It has the CBR phases such as Reuse

Module, Retrieve Module and retain module where

we have maintained the existing class library

repository and new added one. To interact with

system, we have a user interface where user can

input the problem. The system admin module

checks the problem and controls on entire module.

Figure (b): Proposed Module

System Admin Module

The System Admin Module monitors the

programmer’s implementation via the extracted

signatures of the partial class specification and

compiles the code when needed.

A Compiler, interpreter would allow to test, run

un-compiled Java statements; thus check the

syntax of the expressions. This is however not

required but may be a great idea for further

development.

The System Admin then passes the task on to the

appropriate Retrieve Modules. Each cluster has

more specific knowledge about a certain group of

cases. The cluster represents a case base to the

relevant to the package as suggested (James

Gosling, 1996) and a single Case Base is in reality

a single case description of a Java class.

The Manager also monitors the coding. The user

specifies how often (a time interval) or under what

condition (number of code lines in the editor) the

Manager should interpret the code and make a

target case for the retrieval process.

The Retrieve Module

Java programs are organized as sets of packages.

Each set has its own set of names for types, which

help to prevent name conflicts. The naming

structure for packages is hierarchical which is

convenient for organizing related packages in a

conventional manner. A Retrieve Module

represents a single package in the repository as a

”package case”. A package case consists of all the

types (method return types, fields and argument

lists) of all the classes in a Java package.

5

Each value has a significance attribution. The

significance of a type in a certain package is a

calculation of its number of occurrences in a case

in relation to occurrences in each other package

and in the whole repository. The significance of a

type is hence a value used in the matching with the

target case’s types. If it finds that classes in the

package contain highly significant types for this

particular target case it will pass the target case to

the case base for further matching. The clustering

algorithm won’t store the relevant case which

having good match instead of best match. It there

is no significance it doesn’t store in case base

repository.

The Case Base Repository

The individual case, or Case Base, possesses its

own case description. The descriptions are created

using Java’s reflective facilities. Java allows any

class to be asked for its methods, fields,

constructors, inheritance information, and other

information at run time (Sun Microsystems, 1999).

Java’s syntactic reuse construct is the import

statement. Java uses an environmental variable

called CLASSPATH to establish where to search

for classes that are mentioned as import

statements.

The retrieve module supported case-based retriever

traverses the directories on the CLASSPATH

environmental variable, extracts all the feature

information for each class in a pre-processing step

and stores that information in a file associated with

the class for later use.

Each file is associated with a Case Base. When a

base case is matched with a target case it obtains a

similarity value based on threshold. This value

(between 0-1) determines if the case is a user for

reuse. If the match is good (greater than a

predefined threshold) the Case Base offers itself as

a potential case for retrieval. The user specifies the

threshold the case has to match to be considered as

a potential case for reuse. If the match evaluates to

half of the threshold, the Case Base continues to

live in memory but does not send an event.

Similarity Matrix

The estimation of the similarity between the target

and the base is developed by (Bjørnar Tessem,

1999). The Case Bases (base cases) estimate a

similarity to the target class using similarities

between pairs of methods, constructors, and data

fields. To establish a similarity for a base case it

does the following steps:

1. For each method, constructor, and data field in

the base class use its signature to compute a

similarity to each of the method signatures of

the target.

2. For each method, constructor, and data field in

the target select the most similar entry in the

base class description and match it to this

entry. As the entries in the base class are

selected, mark them not-selectable.

3. The total similarity is the sum of the

similarities of the selected matches in the

target case.

For constructors only argument similarity counts,

whereas for data fields type and name similarity

counts. The similarities grouped into similar types

of clusters using clustering technique.

At last, after retrieving a user’s case the system

provides the user with feedback about what it has

carried out. The system gives information about

which alternatives to the programmer has. The

alternatives consist in either proposing adaptation

of the retrieved case (s) with help from the reuse

assistant, to continue the adaptation independently

from the assistant, or to continue the programming

with new searches for others and maybe more

appropriate cases for potential reuse. The

programmer is completely free to follow system’s

advice or to ignore it.

Conclusion:

Modern programming languages, especially

object-oriented languages, make use of large

libraries of reusable components (e.g. class

definitions). We want to make it easier for

programmers to make use of the resources

contained in these libraries.

The System Admin Module collects all retrieved

cases from the different packages. The best cases

are sorted by how well they match the target case

6

and are presented to the user. The leftover cases

(or Case Bases) are kept alive, as they may

become potential cases for reuse in the further

development of the target case. In the next round

of matching these leftover cases will be re-

matched without having to re-read their features

and invoke them again. The System Admin

Module responsibility in this environment is to

independently execute the case-based matching

cycle at the right time and with satisfying

feedback.

References:

1. Aamodt, E. P. (1994). Case-Based Reasoning: Foundational Issues, Methodological Variations, and

System Approaches (Vol. 7). AI Communications. IOS Press.

2. Bjørnar Tessem, R. A. (1999). Case Based Support for RAD. Skokie, Illinois: SEKE'99 Proceedings -

11th Conference on SE and KE.

3. James Gosling, B. J. (1996). The Java Language Specification, The Java Series (1 ed.). Addison-Wesley.

4. Kolodner, J. L. (1992). An Introduction to Case-Based Reasoning. College of Computing, Georgia

Institute of Technology, Atlanta, GA 30332-0280,: Artificial Intelligence Review.

5. Morisbak, S. I. (June 22, 2000). The Road to ASCRARAD: The Development of Agent Support for a Case-

based Reuse Application for RAD.

6. Shiu, S. K. (2003). Foundation of Soft Case Based Reasoning. Wiley series on intelligent systems.

7. Sun Microsystems, M. V. (1999). Java 2 SDK, Standard Edition Documentation. CA.

