Design and Modeling of Boring Fixture for Roller Stand

Kamlesh R Der1, Hardik N Chauhan2, Bhupat VKavad2

1Mechanical Engineering, Government Engineering College- Bhuj
2Mechanical, Atmiya institute of Technology and Science-Rajkot

Abstract - A Fixture is a device that must be able to position, hold support the work piece throughout machining operation. Generally used in mass and medium production. This paper aims to provide sufficient condition to establish correct relation to work piece and fixture in terms of positioning and locating work with the machine tool to have fine dimensional accuracy. The cast component, roller stand is main part of cutting machine. The major operation to be performed are boring and milling slot. The real time criteria is to bore exact hole and slot with respect to each other with dimensional accuracy within limit. The research work include 3D assembled and exploded view of fixture and its components using Cero Elements and AutoCAD 2012 in addition to detail & Assembly drawing. Based on this a trial base model is prepared and the validation of the fixture is carried out through process capability study of measured bore diameter.

Keywords - Boring Fixture, Modelling, Process Capability, CNC machine

I. INTRODUCTION

A fixture is a device that is used to locate, clamp and support work piece during machining, assembly and inspection operation. The basic criteria is to provide adequate stability to work piece along with correct positioning against cutting tool by holding it firmly without any deformation. A proper design establish proper relation between work piece and cutting tool and hold work piece with optimum clamping force to minimize geometric error and deformation in work piece. Fixture design involves setup planning as the number of operation that carried out on the work piece depends on geometry of work piece and machining capability, each setup is unique in terms of overall requirement of design criteria. Setup planning involves determination of operations and part geometry. A location layout and clamping arrangement is another task that prompt impact on better design of fixture. A 3-2-1 principle of location is widely accepted principle for correct location. Clamping force calculation helps to provide adequate clamping force, as low clamping force will create vibration and tends to lift the work during machining, results in poor machining. On other hand unnecessary clamping force create geometrical change in work piece. A 3Dimensional model will help to provide better view to verify correct relations with each components of fixture as well as provide necessary conditions for further modification and analysis.

II. DESIGN AND MODELING

This design and development is based on Case based reasoning method under guidance of industrial expert who based on the similar problem faced in past decide the change in the designing and moderning process. A problem solving CBR use past methodology to overcome the new problem.

2.1 Design Criterion

The basic criterion is to design fixture for two semicircular bore with dimensional accuracy of 50 ± 0.05 and to maintain distance between the two centers of the bore along with other operations that required to finish the component.

2.2 Input Condition

Component: Gray cast iron 300mm x330 mm (EN-GJL-200 (FG 200, Indian standard))
Initial bore Size: ϕ 42
Machine: VMC PX20 (Jyoti CNC Automation Ltd.)
2.3 Fixture Design process

It consist of setup planning to determine no of setup required (3 in this components) to manufactured complete component followed by Fixture planning for each setup to determine locating and clamping requirements. Components of fixture designed and modeled in creo parametric based on acting forces on the component during manufacturing for suggested cutting tool and machine tool. Along with Boring operation of semicircular hole there are 9 more operations performed in first setup

2.4 Force Calculation:

Input parameter are
Boring tool diameter D = 50 mm
Material: EN-GJL-200
Pre-drilled Ø 42 mm
Spindle speed n = 1100 rpm
Cutting Speed = 100 m/min
Feed f = 100/1100 = 0.091 mm/rev
Lead angle κ = 90°
Kc= 1857 (by ISCAR tool)
Spindle Speed \(V_c = \frac{\pi D n}{1000} = \frac{3.14 \times 50 \times 1100}{1000} = 172.7 \text{ m/min} \)
Cutting Depth \(a_p = \frac{D-d}{2} = \frac{50-42}{2} = 4 \text{ mm} \)
Cutting Cross section \(A = a_p f_n = 4 \times 0.091 = 0.364 \text{ mm}^2 \)
Chip Thickness \(h = f_z \sin \kappa = 0.091 \times \sin 90° = 0.091 \text{ mm} \)
Cutting Force \(F_c = A \times Kc = 0.364 \times 1857 = 675.94 \text{ N} \)
Cutting Torque \(M_c = F_c \times d_m/2 = (675.94 \times 0.046)/2 = 15.54 \text{ Nm} \)
Cutting Power \(P_c = (2 \pi n)/60000 = (2 \times 3.14 \times 1100)/60000 = 1.78 \text{ kw} \)

The following calculation verified by ISCAR software for machining calculation
2.5 Clamp selection based on clamping force

Cutting force may varies as cutter enters and leaves the work piece and throw away an extra load on the clamps. Clamps should not be loosen by vibration, which are caused by interrupted cutting by milling cutter at start and end of operation. Also clamps must be located opposite to the locating surface and must be designed in such a way that it make ease in loading and unloading of parts. In current problem there is maximum 675N cutting force developed during semicircular boring, in other operation of the first setup like drilling and tapping, the cutting force required is less than that of required in the boring operation, so the selection of clamp type, its size and number of clamp required is based on boring operation.

Clamping force must be taken greater than the cutting force, here it is assumed to be 2 times greater because of uncertainty of magnitude of external force acting on the component, variation of properties of material, variation in dimension due to poor workmanship, dynamic nature of load and many assumptions made in calculations.

\[
\text{Clamping force } P = \frac{\text{Factor of Safety } \times \text{ Cutting Force}}{\text{Static Coefficient of Friction}} = \frac{2 \times 675}{19} = 7105 \text{N}
\]

For medium carbon steel, tensile strength \(\sigma_t = 800 \text{ MPa} = 800 \text{ N/mm}^2 \)

So permissible tensile stress = \(\frac{\text{Max Tensile stress}}{\text{Factor of Safety}} = \frac{800}{6} = 133.33 \text{ N/mm}^2 \)

Load \(P = \pi/4 \) \(dc^2 \) \(\times \sigma_t \)

So, \(dc = 8.23 \text{mm} \)

Core diameter \(dc \) is taken as 0.8 nominal diameter \(d \)

So, Nominal diameter \(d = dc / 0.8 = 8.23 / 0.8 = 10.24 \text{mm} \)

For this a M10 bolt is selected using PSG design data book

For effective clamping the 1/3 of the clamp length provided in between bolt and work piece as shown in the figure.
Using PSG design Data book modified strap clamps are designed,
Bolt size = M10
Width of clamp \(w = 30 \text{mm} \)
Height of clamp \(h = 30 \text{mm} \)
Slot width \(c = 12 \text{mm} \)

III. UNIT DESIGN WITH MODEL IN CREO PARAMETRIC FOR FIRST SETUP OF FIXTURE

The major part of designing any fixture involves force calculation and clamping selection, beside this there are requirement of correct location of parts in fixture in order to orient part in unique position every time when fixture is loaded for machining. To ensure this a 3-2-1 principal of location as described earlier is used. For perfect location a resting pad with knurling hatched and locating support as shown in drawing is fabricated. To hold the entire unit a robust plate is the prime requirement. All this components of the fixture is developed in CAD modelling using Creo Parametric software.
In this fixture 20 major components are designed and assembled. Each part is prepared in Creo 3.0 modeling software using features like extrude, revolve, hole chamfer, draft etc. after modeling of every part it is assembled providing various constraints like distance, coincide, parallel and normal

IV. VALIDATION

A working model is manufactured based on the creo parametric model, during trial run various measurements are taken and process capability study is carried out to validate the fixture against basic requirement of the dimensional accuracy.

4.1 Process Capability
Process capability is a simple statistical measure which shows how close the process is with the specified values. Higher the number, better will be the process. \(C_p, C_{pu}, \) and \(C_{pk} \) are two numbers that are used in the study of process capabilities.

\(C_p \) \textit{process capability}, a simple straightforward indicator of process capability

\(C_{pk} \) \textit{Process capability Index}, adjustment of \(C_p \) for the effect of non-centered distribution

\text{“}C_{pk}\text{”} is an index which measures how close the process is running to its specification limit, relative to the natural variability of the process. The larger the index, less likely that any measured value fall outside the range.” -Neil Polhemus

\(C_{pk} \) measure how close you are to your target and how close you are to around your average performance. A person may be performing with minimum variation but he can be away from his target towards one of the specification limit which indicates lower \(C_{pk} \), whereas \(C_p \) will be high. On the other hand a person may be on average to the target but variation in performance is high (within limit) in such case to the \(C_{pk} \) is lower and \(C_p \) is high. \(C_{pk} \) will be higher only when you are meeting target consistently with minimum variation.

5.2 \textbf{Process Capability Indices}

\begin{align*}
\text{USL} &= \text{Upper Specification Limit} \\
\text{LSL} &= \text{Lower Specification Limit} \\
\bar{X} &= \text{Mean of the process} \\
\sigma &= \text{Standard deviation of the process}
\end{align*}

<table>
<thead>
<tr>
<th>Index</th>
<th>Equation</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_p)</td>
<td>(\frac{USL - LSL}{6 \sigma})</td>
<td>Process capability for two-sided specification limit, irrespective of process center.</td>
</tr>
<tr>
<td>(C_{pu})</td>
<td>(\frac{USL - \bar{X}}{3 \sigma})</td>
<td>Process capability relative to upper specification limit</td>
</tr>
<tr>
<td>(C_{pl})</td>
<td>(\frac{\bar{X} - LSL}{3 \sigma})</td>
<td>Process capability relative to upper specification limit</td>
</tr>
<tr>
<td>(C_{pk})</td>
<td>(\min \left[\frac{USL - \bar{X}}{3 \sigma}, \frac{\bar{X} - LSL}{3 \sigma} \right])</td>
<td>Process capability for two-sided specification limit accounting for process centering.</td>
</tr>
</tbody>
</table>

Table 1 Process Capability Indices

If \(X \) is target, then \(C_p = C_{pk} \)

\(C_{pk} \) will be always less than or equal to \(C_p (C_{pk} \leq C_p) \)

The defect levels or parts per million non-conforming were computed for different \(C_p \) values using the Z scores and the percentage area under the standard normal curve using normal deviate tables.

This process is so good that even if the process mean shifts by as much as \(+/-\ 1.5 \text{ sigma}\) the process will produce no more than 3.4 non-conforming parts per million.

<table>
<thead>
<tr>
<th>Capability Index</th>
<th>Estimation of Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_p = C_{pk})</td>
<td>Process is placed exactly at the centre of the specification limits.</td>
</tr>
<tr>
<td>(C_p < 1)</td>
<td>Process is not adequate</td>
</tr>
<tr>
<td>(1 \leq C_p \leq 1.33)</td>
<td>Process is adequate</td>
</tr>
<tr>
<td>(C_p \geq 1.33)</td>
<td>Process is satisfactory enough</td>
</tr>
<tr>
<td>(C_p \geq 1.66)</td>
<td>Process is very satisfactory</td>
</tr>
<tr>
<td>(C_p \neq C_{pk})</td>
<td>Process is inadequate, new parameters must be chosen.</td>
</tr>
</tbody>
</table>

Table 2 Process Capability Estimation

5.3 \textbf{Process capability study for first semicircular Bore}

<table>
<thead>
<tr>
<th>Sub Group</th>
<th>Sample Size</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>(\bar{X})</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50.032</td>
<td>50.03</td>
<td>50.035</td>
<td>50.03</td>
<td>50.032</td>
<td>0.005</td>
<td></td>
</tr>
</tbody>
</table>

©IJAERD-2014, All rights Reserved
Calculations for Control Limits

From the data selected, the control limits are calculated by calculating Average (\bar{X}), Ranges (R) and Standard Deviation (σ). Computation for control limits are as follows:

\[
\text{Average } \bar{X} = \frac{\sum x}{N} = 50.0366 \\
\text{Range } R = \frac{\sum R}{N} = 0.0046 \\
\text{Standard deviation } \sigma = \frac{\bar{R}}{d_2} = \frac{0.0046}{0.059} = 0.00223
\]

For X chart

Upper Control Limit (UCLX) = $\bar{X} + A_2 \bar{R} = 50.0461$

Lower Control Limit (LCLX) = $\bar{X} - A_2 \bar{R} = 50.0366$

For R chart

Upper Control Limit (UCLR) = $D_4 \bar{R} = 0.01051$

Lower Control Limit (LCLR) = $D_3 \bar{R} = 0$

\[(A_2 = 0.729, \ d_2 = 0.059, \ D_4 = 2.282 \text{ depending on no of sample take in sub-group}) \]
Figure 10 X and R Chart

Calculation for CPK & CP:

\[
C_{PU} = \frac{USL - \bar{X}}{3\sigma} = \frac{50.050 - 50.036}{0.0867} = 1.41316
\]

\[
C_{PL} = \frac{\bar{X} - LSL}{3\sigma} = \frac{50.036 - 50.025}{0.00783} = 1.41743
\]

\[
C_P = \min \left(\frac{USL - \bar{X}}{3\sigma}, \frac{\bar{X} - LSL}{3\sigma} \right) = 1.41316
\]

\[
C_{PK} = \frac{USL - SLS}{6\sigma} = \frac{50.050 - 50.025}{0.01566} = 1.41529
\]
VI. CONCLUSIONS

The aim of this fixture is to make it robust as well as to satisfy dimensional accuracy of critical elements like semicircular bore at two ends and the center distance between this two holes which are required to machine with specific tolerances. As the component is of cutting machinery required to produce in medium volume, the simple conventional fixture selected. Four clamps support are provided to reduce deflection of work. Swinging type clamps provides easy loading and unloading of the part. Plunger arrangement facilitate the unloading of part due to jamming against cutting force.

From the result of machining trial and process capability study it is conclude that,

- Fixture can hold the work piece against cutting force
- Dimensional accuracy of semicircular hole \(50 \pm 0.025 \) achieved within given tolerance as measured in trial run
- Achieved process capability (Cp and Cpk) more than 1.33

VII. FUTURE SCOPE

This conventional fixture can be replaced by Hydraulic or Pneumatic fixture. The setup can be reduced from three to two by combining some operations in similar setup. Approach of modular fixture make it more convenient to design as well as fabricate future fixture.

REFERENCES

[2] Parvesh Kumar Rajvanshi, Dr. R.M.Belokar, Improving the process capability of a boring operation by the application of statistical techniques, International journal for science and research, volume 3 issue 5, 2012
[18] M Chandru, C Padmanabha, Design and fabrication of wedge milling fixture presented at BHEL

©IJAERD-2014, All rights Reserved