Real Time Multiple Face Recognition Using Eigen Face Feature Of Viola Jones And SVM Classifier

Mr. Sagar Pandya¹, Miss Vidisha Patel², Miss Shraddha Shah³, Miss Udita Doshi⁴, Mr. Sheshang Degadwala⁵
¹Computer Engineering, Sigma Institute of Engineering
²Computer Engineering, Sigma Institute of Engineering
³Computer Engineering, Sigma Institute of Engineering
⁴Computer Engineering, Sigma Institute of Engineering
⁵Computer Engineering, Sigma Institute of Engineering

Abstract - The demand of smart cameras for various applications in surveillance for security purpose is growing rapidly. However, till now, the handling required for real-time face detection prohibits integration of the complete application into a small sized camera. The Real Time Face Tracking and Identification for Surveillance System proposed in this research work has originated ahead with a simple and an efficient approach to satisfy the handling requirements and enable constant and precise face detection. The core functionality of the proposed system is to allow tracking and identification of various human faces in a video stream and thereby provide a centralized, cost-effective and robust mechanism of securing business and government premises. The primary objective of the proposed system is to reduce detection redundancy, minimize misclassification risk, provide huge processing capacity and work within a reasonable computational budget.

Keywords - Face Recognition, Camera Security, Multiple face detection, Descriptor, Viola-Jones, SVM feature classifier.

I. INTRODUCTION

The demand for authentication and access control has been increasing tremendously since last few years. Face recognition plays an important role in this field. Many algorithms have been established to build the face detection task easier but in real setup this task is very difficult. An well-ordered face recognition system must be capable to deal with variations of face images in position, illumination and expression. The variation in the images of the same face due to clarification and posture are always larger than variant owed to face identity. This makes face recognition task very challenging.

In this paper, a powerful multiple face recognition system has been proposed. The system is build, using a combination of HOG feature descriptor and SVM feature classifier along with the Viola-Jones face detection framework. After preprocessing of image using the equalization technique, the original size of image is taken. The object detection framework Viola Jones is utilized for detection of human faces and histogram of oriented gradients (HOG) include descriptor is utilized for face highlight extraction. The picture is segregated into little – related locales called cells, and for the pixels inside each phone, a histogram of slope headings is incorporated. The outcome results into better light and shadowing. Support vector machines (SVMs) which is a capable apparatus for creating design arrangement and capacity estimate systems is used for face identification.

II. METHODOLOGIES

A. Principal Component Analysis (PCA)

Principal component analysis (PCA) utilizes an orthogonal change procedure. It is utilized to change over a course of action of impression of potentially related elements into an essential segments.

The quantity of essential segments is not completely equivalent to the quantity of unique factors. This change is means that the primary important part has the greatest possible fluctuation and each succeeding segment thus has the most significant difference possible under the limitation that it is orthogonal to the previous segments. PCA is sensitive to the relative scaling of the first factors.

B. Hidden Markov model (HMM)

In hidden Markov model (HMM) the modeled system is thought to be a Markov procedure with shrouded states. In easier Markov models (like a Markov chain), the state are straightforwardly obvious to the eyewitness thus the state move probabilities are the principle parameters. While in a concealed Markov display, the state is not specifically unmistakable, but rather the yield, subject to the state, is obvious. Every state has a likelihood conveyance over the conceivable yield tokens. In this manner, the arrangement of tokens created by a HMM gives some data about the progression of states.
These models are mainly known for their application in speech, gesture recognition and handwriting. Hidden Markov models have been generalized recently to a triplet Markov models and a pair wise Markov models, which allow non-stationary data modeling.

C. Viola Jones

This algorithm is developed for face detection. It is commonly implemented in Open CV to detect the faces from printed image. To detect a face, the face must point towards the camera and it should not be tilted to either side, as Viola Jones algorithm mostly deals with full view frontal upright faces. It seems that these constraints could lower the algorithm's utility to a certain extent, but in practice these limits are quite acceptable.

The main characteristics of Viola–Jones algorithm due to which it is an appropriate detection algorithm are:

- **Real time** - At least 2 frames per second must be processed, for practical applications.
- **Only Face detection (not recognition)** - The goal is to distinguish faces from non-faces (detection is the first step in the recognition process).

The face detection process undergoes four stages:

i. Haar Feature Selection
ii. Creating an Image
iii. ADA boost Training
iv. Cascading Classifiers

The features gathered by the detection framework involve the sum of image pixels within rectangular areas. As such, they bear some resemblance to Haar basis functions, which have been used previously in the realm of image-based object detection. The value of any given feature is the sum of the pixels within clear rectangles subtracted from the sum of the pixels within shaded rectangles.

1. **Haar Features** - Every human face shares few properties like, the upper cheeks are brighter than the eye region and the eye region is darker than the nose bridge region. The similarities in all human faces can be matched by using Haar features. The features matched by this algorithm are then sought in the image of a face.

Viola & Jones uses rectangle features:
The rectangle feature: Value = Σ (pixels in black area) - Σ (pixels in white area).
Every feature is related to a specific location in the sub-window.

2. **The rectangular features** - They are evaluated by an image representation called the integral image in short time, which gives a considerable speed advantage.

The sum of the pixels above and to the left of (x,y), gives the integral image at location (x,y).

III. PROPOSED BLOCK DIAGRAM

![Proposed System Flow](image)

i. Real time camera capture

Real time camera capture can be done with some options like Real Time Streaming or Real Time Recording. The electronic messages are transmitted through a LAN or across the Internet. This transmission of a video and/or audio from a source to a PC, Smart Phone or a mobile device, is called as Live Video Streaming. Streaming is a process of using the Internet for transmitting content by encoding it into a number of decodable formats.

Real time recording is simply a security DVR (Digital Video Recorder) that displays and record 30 frames per second i.e. each channel on the DVR can capture and record at least 30 frames per second. This is called full motion recording. The main purpose is to have smoothest and clear picture because in security we cannot afford to have glitch, unclear video.
ii. **Convert to frames**

When you extract all frames from a video clip, capturing the images one at a time is incredibly inefficient and time consuming. For that purpose a program that can extract image and save it in format like jpg or png, is needed.

Pre-preparing controls: Equalization procedure is utilized for improvement as a part of preprocessing of picture. The technique is helpful in pictures with foundations and forefronts that are both brilliant and both dull. This technique as a rule expands difference of pictures and forces can be better circulated. This considers territories of lower nearby complexity to pick up a higher difference. Histogram evening out fulfills this by adequately spreading out the most incessant force values.

iii. **Face detection using Viola Jones**

The Viola Jones framework is the first object detection framework that provides accurate object detection rates for face detection (distinguish from non-faces).

Although Viola Jones framework can be trained to identify a variety of object classes, it is motivated primarily for face recognition. During the learning stage, cascades of detectors are trained so as to gain the desired accuracy. Robustness is one of the main characteristics of Viola Jones algorithms which make it a good detection algorithm i.e. Because of very high detection rate (true-positive rate) & very low false-positive rates.

iv. **Face feature extraction using Eigen value**

The variation between face images are characterized by a set of eigen vectors. In terms of a face, the eigen vector can be represented as an eigen-face.

The faces can also be approximated using only the "best" eigen faces - i.e., those faces that account for the most of variance within the set of face images.

In the eigen-face approach, the important aspects for identification are considered, i.e., to extract the relevant information in a face image, encode it most efficiently and then compare one face encoding with the database of models encoded similarly.

v. **Identification using SVM**

A support vector machine (SVMs) is a powerful tool for evolving pattern classification. SVM are used to hold the face recognition problem. SVMs have achieved knowingly advanced search accuracy than traditional query refinement schemes.

Main applications of these techniques are speech and image analysis, character recognition, person identification, industrial supervision, etc.

IV. EXPERIMENTAL RESULTS

Our software design of the proposed work is made in Visual Studio 2010 along with open CV integrated with MATLAB. The implementation of face detection using viola jones with HOG features is depicted in figure 2 and face features extraction part using eigen features is depicted in figure 3 and face recognition part using SVM is depicted in figure 4.

![Figure 2: Face detection using Viola jones and HOG](image1)

![Figure 3: Face features Extraction using eigen features](image2)
Comparison Analysis

Comparison between various face detection techniques

Table 1: Face detection techniques

<table>
<thead>
<tr>
<th>Methods</th>
<th>PCA</th>
<th>HOG</th>
<th>HAAR</th>
<th>Eigen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Face detection</td>
<td>89.5</td>
<td>95.22</td>
<td>91.45</td>
<td>93.6</td>
</tr>
</tbody>
</table>

Figure 5: Analysis of various face detection techniques

Comparison between various face identification techniques

Table 2: Face identification techniques

<table>
<thead>
<tr>
<th>Methods</th>
<th>ANN+ Eigen</th>
<th>SVM+ Eigen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Face Identification</td>
<td>96.23</td>
<td>98.23</td>
</tr>
</tbody>
</table>
CONCLUSION

The proposed system has come up with a new approach where Eigen features are incorporated into the Viola-Jones face detection algorithm, allowing us to detect multiple faces with greater efficiency. The system deals with various face poses and lighting conditions using SVM classifier. The process of matching faces in photo databases and then automatically detecting face features and identifying faces on still images and video streams in real-time system, fulfills the requirements of various security models such as criminal detection, government confidential security, etc. It can also be useful for attendance management systems. The new technology proposed here has come up with a reliable and huge processing power. The system works efficiently for large databases. As a result there are no technological barriers for stepping from the pilot project to a wide spread deployment.

REFERENCES

[1] A. John Dhanaseely Research Scholar Department of EEE Pondicherry Engineering College Puducherry, S. Himavathi Professor Pondicherry Engineering College Puducherry, E. Srinivasan Professor & Head Department of ECE Pondicherry Engineering College Puducherry; Principal Component Analysis based Cascade Neural Network for Face Recognition

[2] Gaurav Aggarwal, Amit K Roy Chowdhary, Ramma Chellappa, Dept. of Computer Science University of Maryland College Park, MD, IEEE Computer Society; A SYSTEM IDENTIFICATION APPROACH FOR VIDEO-BASED FACE RECOGNITION

[5] K. Susheel Kumar, Shitala Prasad, Vijay Bhaskar Semwal, R C Tripathi Department of Computer Engineering, Ideal Institute of Technology, Ghaziabad, INDIA, Department of Information Technology, Indian Institute of Information Technology Allahabad, INDIA, Newgen Software Technology, Greater Noida, INDIA; REAL TIME FACE RECOGNITION USING ADABOOST IMPROVED FAST PCA ALGORITHM

[6] Lireza Tofighi, S. Amirhassan Monadjemi Department of Computer Engineering University of Isfahan Isfahan, Iran; Face Detection and Recognition using Skin Color and AdaBoost Algorithm Combined with Gabor Features and SVM Classifier

[7] Ming Zaoh, Tat-Seng Chua, National University of Singapore National University of Singapore, Markovian Mixture Face Recognition with Discriminative Face Alignment

[8] Ms. Varsha Gupta, Mr. Dipesh Sharma Research Scholar, Department of Computer Science and Engineering, RITEE, Raipur, India Associate Professor, Department of Computer Science and Engineering, RITEE, Raipur, India; A Study of Various Face Detection Methods

[9] O. Déniza, G. Buenoa, J. Salidoa, F. De la Torreb; Universidad de Castilla-La Mancha, E.T.S. Ingenieros Industriales, Avda. Camilo Jose Cela s/n, 13071 Ciudad Real, Spain bCarnegie Mellon University, Robotics Institute, 211 Smith Hall, 5000 Forbes Ave., Pittsburgh, PA 15213, USA; Face recognition using Histograms of Oriented Gradients

[11] Ping Zhang, Department of Mathematics and Computer Science, School of Arts and Sciences, Alcorn State University, USA, A Video-based Face Detection and Recognition System using Cascade Face Verification Modules

[13] Swapnil V. Tathe and Sandipan P. Narote Sinhgad College of Engineering, Pune, India; Real-Time Human Detection and Tracking

[14] Tong Zhang Hewlett-Packard Laboratories; VIDEO SECURITY WITH HUMAN IDENTIFICATION AND TRACKING

[15] Zhaomin Jhu; Multi-view face detection and recognition using Haar-features