An Efficient Image Forgery Detection using Pseudo Zernike Moment
Sheshang D. Degadwala¹, Kishori S. Shekolkar², Arpana D. Mahajan³, Amit Nayak⁴

¹Computer Engineering, Sigma Institute of Engineering
²Computer Engineering, Sigma Institute of Engineering
³Computer Engineering, Sigma Institute of Engineering
⁴Information Technology, CHARUSAT UNIVERSITY

Abstract— Done up to date time about data age, digitalization need revolutionized like never in front of. Capable computers, propelled photograph altering programming bundles What's more helter skelter determination catching gadgets bring settled on control about advanced pictures unbelievably simple. Similarly as for every similarly as picture forensics concerns, a standout amongst the mossy cup oak actively scrutinized territory would identification from claiming duplicate move forgeries. Higher computational unpredictability is a standout amongst the significant segment of existing strategies will recognize such altering. Moreover, duplicate move falsification is normally performed on three steps. In duplicating of a locale over a picture At that point pasting the same particular case in the same particular picture and At last finishing a portion post-processing like rotation, scaling, shift, noise, and so forth. Consequently, pseudo Zernike minute is utilized similarly as a Characteristics extraction technique to matching picture squares and concerning illustration an essential variables around which execution of identification calculations relies.

Key words: Image Forensics, Image Forgery, Copy- Move Image Forgery

I. INTRODUCTION

In our daily life digital media is playing a vital role because of popularity of low cost and high resolution cameras. Likewise the image transforming product bring been developed, Indeed individuals who are not masters to image transforming could effortlessly modify advanced pictures. It acquires something like incredible benefits, as well as side effects: an amount of tampered pictures need as have late been disseminated or need actually has been distributed Eventually Tom's perusing major daily papers. Therefore, confirmation of legitimacy will be imperative for advanced pictures. Around different falsification strategies utilizing ordinary image transforming tools, copy-move falsification is a standout amongst those The majority regularly utilized strategies. The copy-move falsification duplicates and only the picture What's more paste it under another and only those picture will hide a confirmation or delude individuals. Figure 1 demonstrates a sample of the modified photo discharged by Iran What's more distributed toward western networking counting the new York Times, the BBC news. Los Angeles Also so forth throughout this way, observing and stock arrangement of all instrumentation may be enha. Looking into July 9, 2008[1].

![Figure 1: copy-move forgery example (1): (a) Four missiles Forge Image (b) Three Missile Original Image](image)

Image forgery can be broadly classified in three categories namely image forgery using intertwining, copy-move image forgery and image resampling [2]. This paper focuses on copy-move image forgery and its detection methods. The paper is prepared as follows. In section-2, connected work is discussed. In section-3, copy-move image forgery and its finding methods are discussed. Section-4 proposed method. In section-5 Implementation of proposed method and section-VI presents conclusion and future enhancement.
II. RELATED WORK

In digital images, there are many submissive discovery methods have been proposed to detect image forgery. We can use block based or key point based matching methods for detection of forgery and the performance of the discovery procedures be contingent mainly on the landscapes, which are used for similar the chunks [7].

Osamah M. Al-Qershi and Khoo Bee Ee discussed different methods of image forgery detection in digital image forensics. The problem of authentication of an image are addressed by digital image forensics [5].

Hoda Marouf and Karim Faez proposed new efficient facial-based identical twins recognition according to the geometric moment. Pseudo zernike moment is robust to RST. Also, the facial area inside an image is detected using Ada Boost approach [6].

In one paper Osamah M. Al-Qershi and Bee Ee Khoo proposed an improved identical technique for copy move image forgery discovery using Zernike moment. As Zernike moment is invariant to rotation and in some cases invariant to scaling also. It provide better detection accuracy compared to other passive techniques [7].

In one paper authors uses Zernike moment for detection of object which are copied moved or rotated. By using Zernike moment the ratio of false positive can be less [8].

Duplicate move will be a standout amongst those the vast majority normal picture altering system utilized because of its effortlessness and effectiveness, on which parts of the unique picture may be copied, moved to a wanted area Furthermore pasteboard. This will be typically carried in place will shroud certain subtle elements or should copy certain parts for an picture. Textured areas need aid utilized Concerning illustration Perfect parts to duplicate move forgery, since textured territories bring comparative color Furthermore clamor variety properties to that of the picture which would unperceivable for mankind's eye searching for inconsistencies to an picture Factual properties. Blurring will be as a rule utilized along that fringe of the changed locale on render that impact of irregularities between the first What's more pasteboard areas [4].

Generally, Copy-Move falsification identification strategies might a chance to be arranged under two approaches: Piece built methodologies What's more Key-point built methodologies. Some type from claiming pre-processing will be there clinched alongside both those methodologies. To piece based methods, the picture will a chance to be separated under covering pieces of specified span and a characteristic vector will make registered for these squares. Comparable characteristic vectors need aid after that matched on find the fashioned locales. For key-point based methods, characteristic vectors need aid registered to locales for secondary entropy. There is no subdivision underobstructs. Those characteristic vectors would matched should find those duplicated squares.

Those regular preparing pipeline for duplicate move falsification identification is indicated clinched alongside figure.

![Figure 2: Basic handling pipeline for copy-move forgery detection [4]](image)

Zernike minute will be utilized to identification from claiming copy-move falsification. Zernike minute have alluring properties in revolution invariance, versatility invariance, heartiness will commotion and so on. Detectability for copy-move falsification against proposed distortions for example, JPEG compression, added substance white gaussian noise, What's more blurring were tried. The technique might have been found on make powerless against scaling done a portion cases, movement Furthermore relative transformations Furthermore it recommended the utilization from claiming proficient information structures to decrease computational intricacy.
With figure those Zernike minutes of a provided for block, those focus of the piece may be made as the root What's more pixel coordinates need aid mapped of the reach of the unit circus siliquastrum. The individuals pixels falling outside the unit circus siliquastrum are not utilized within those calculation.

In this Zernike minutes may be utilized as characteristic extraction system. It may be hearty to revolution furthermore scaling anyway not hearty should movement Also relative change.

III. PROPOSED WORK

Pseudo-Zernike polynomials need aid great referred to Furthermore generally utilized within the examination for optical frameworks. They would additionally generally utilized previously, picture dissection concerning illustration state descriptors. PZM will be geometric-based minute that utilization those worldwide majority of the data previously, a picture to extracting Characteristics. The orthogonal minutes for PZM are shift, rotation; What's more scale invariants which would suitableness to example distinction provisions. Pseudo-Zernike holds a few orthogonal sets for complex-valued. Polynomials characterized as:

\[V_{nm}(x, y) = R_{nm}(x, y)\exp(jm \tan^{-1}(\frac{y}{x})) \]

Where \(x^2 + y^2 \leq 1, \ n \geq 0, |m| \leq n \)

The ZM of order n and repetition m can be computed as:

\[PZM_{nm} = \frac{n+1}{n} \sum x \sum y f(x, y)V_{nm}(x, y) \]

It thought further bolstering make noted that those PZM may be registered for certain m in light \((x, y) = Vnm \ast (x, y) \). On a picture will be rotated, period from claiming minutes to PZM will be shifted What's more its outright esteem stays steady. Thus, assuming that the outright esteem or worth about PZM may be viéd as as those feature, those characteristic f will be autonomous for revolution [3]. Pseudo Zernike polynomials about request \(\leq P \), hold \((+1)2\) linearly autonomous polynomial for degree \(\leq p \). Pseudo Zernike minute is utilized within optical system, design distinction and to picture Investigation Likewise shape descriptors.

IV. EVALUATION PARAMETER

In this recommended framework test parameters would identification accuracy, computational overhead, rotation, scaling, shift, relative transformation, noise, correct sure proportion furthermore false sure proportion. In the fields from claiming science, building What's more statistics, the precision of a estimation framework may be the degree of closeness of estimations of an amount to that quantity’s genuine inconsistency esteem. Correctness is likewise utilized Likewise and Factual measure about how great an double order test effectively identifies or excludes a state. Execution may be assessed toward the accuracy, precision Also recall rates. Those equations of execution measurements would provide for as takes after:

\[\text{Precision}(P) = \frac{\text{True Positive}}{\text{True Positive} + \text{False Positive}} \]

\[\text{Recall}(R) = \frac{\text{True Positive}}{\text{True Positive} + \text{False Negative}} \]

\[F1 - \text{Measure} = \frac{2PR}{P + R} \]
Computational overhead is at whatever mix of abundance alternately backhanded calculation time, memory, bandwidth, or other assets that would obliged with accomplish a specific objective. A revolution is a hardware development about an item around a focus (or point) about revolution. Picture scaling will be those transform for resizing an advanced picture. Scaling is a non-trivial transform that includes an exchange-off the middle of efficiency, smoothness What's more sharpness. An relative change will be a critical population from claiming straight 2-D geometric alterations which plots variables (e. G. Pixel force qualities found In position (x1,y1) over an information picture under new variables (e. G. (x2,y2) clinched alongside a yield image) Eventually Tom's perusing applying An straight consolidation from claiming translation, rotation, scaling or clipping (i.e. Non-uniform scaling Previously. A percentage orders) operations. Those false sure rate may be the extent about absent occasions that yield sure test outcomes, i.e., those restrictive likelihood of a sure test consequence provided for a absent off chance. Correct certain proportion measures those extents of positives that would effectively identifier. This is likewise call recall done some fields.

V. EXPERIMENTAL RESULTS

Figure 4: Forged image 533×355 Moments of an image generated by pseudo Zemike moment

Figure 5 Block tiling and feature extraction of forged image 2×3 Histogram of an image blocks

Figure 6: Matching features by moments and detection of copy move area
Forged image of size 533×355 is divided into block of 2×3. So we have total 6 blocks of an image. Each block’s moment is calculated by pseudo Zernike moment’s feature extraction method. After that, by verifying step we can identify that which region of an image is actually tampered or not. In figure 7 there are same moment values of block 1, block 2 and block 5. So we can easily identify by this moment value that which region of an image is tampered.

VI. COMPARATIVE ANALYSIS

Table 1: Analysis of existing method

<table>
<thead>
<tr>
<th>Images</th>
<th>Precision</th>
<th>Recall</th>
<th>F1-measure</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image1</td>
<td>60</td>
<td>75</td>
<td>66.67</td>
<td>2.30</td>
</tr>
<tr>
<td>Image2</td>
<td>66.66</td>
<td>66.66</td>
<td>66.67</td>
<td>2.62</td>
</tr>
<tr>
<td>Image3</td>
<td>75</td>
<td>97.7</td>
<td>85.71</td>
<td>2.59</td>
</tr>
<tr>
<td>Image4</td>
<td>75</td>
<td>85.71</td>
<td>80</td>
<td>2.73</td>
</tr>
<tr>
<td>Image5</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>1.64</td>
</tr>
</tbody>
</table>

Above table shows the analysis of Zernike moment with parameters precision, recall, F1-measure and time. The following graph shows the graph of above table.

![Analysis of existing method](image1.png)

Figure 7: Analysis graph of existing method

Table 2: Analysis of proposed method

<table>
<thead>
<tr>
<th>Images</th>
<th>Pseudo Zernike Moment</th>
<th>Precision</th>
<th>Recall</th>
<th>F1-measure</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image1</td>
<td></td>
<td>75</td>
<td>98.5</td>
<td>85.71</td>
<td>2.07</td>
</tr>
<tr>
<td>Image2</td>
<td></td>
<td>95.9</td>
<td>96.7</td>
<td>99.03</td>
<td>1.57</td>
</tr>
<tr>
<td>Image3</td>
<td></td>
<td>80</td>
<td>98.3</td>
<td>88.88</td>
<td>2.28</td>
</tr>
<tr>
<td>Image4</td>
<td></td>
<td>98.3</td>
<td>95.2</td>
<td>96.61</td>
<td>2.28</td>
</tr>
<tr>
<td>Image5</td>
<td></td>
<td>91</td>
<td>96.32</td>
<td>94.92</td>
<td>1.64</td>
</tr>
</tbody>
</table>

![Analysis of proposed method](image2.png)

Figure 8: Analysis graph of proposed method
From the analysis it is clear that Zernike moment has invariant property for scaling and rotation. We can identify copy-move image forgery through the Zernike moment feature extraction method. It provides better result of copy-move object with rotation and scaling. But it does not identify the shifted object in image. So for that we are using pseudo Zernike moment as a feature extraction method. And from the above analysis we can say that pseudo Zernike moment can improve parameters like precision, recall, F1-measure. And also reduce the time. So pseudo Zernike moment provide better accuracy and reduce computational overhead.

CONCLUSION AND FUTURE ENHANCEMENT

From the recent surveyed methods on copy move forgery detection we can conclude that by using block based or matching methods with Zernike moment as feature extraction we can reduce some intermediate and post processing operations like rotation, scaling. But Zernike moment does not invariant to shift and affine transformation. So we are using pseudo Zernike moment as a feature extraction method that is invariant to rotation, scaling, shift and affine transformation and it is also faster than Zernike moment. So it can improve accuracy and reduce computational overhead. So in future work we can use pseudo Zernike moment as a feature extraction method in video forgery detection. So we can provide more security in video like in video surveillance system.

REFERENCES

