Image Annotation and Retrieval Using Dual Classifier Formulation

Authors

  • PranavkumarR.Joshi DepartmentofElectronics and Communication, EngineeringParulInstitute of Engineering and Technology, Limda,Vadodara
  • RiddhiV.Shah ParulInstitute ofEngineering andTechnology,Limda,Vadodara

Keywords:

I mag e An notation, Asy m ptotic complexity, AutomaticImageAnnotation(AIA), TranslationModel(TM), continuous-spacerelevancemodel(CRM)

Abstract

Automatic image annotation is a difficult and highly relevant machine learningtask.Recentadvanceshavesignificantlyimprovedthestate-of-the-art inretrievalaccuracy withalgorithmsbasedonnearestneighborclassification incarefullylearnedmetric spaces. Butthis comesat
apriceofincreasedcomputationalcomplexityduringtrainingand testing
.WeproposeFastTag,anovelalgorithmthatachievescomparableresultswithtwosimplelinearmappingsthat arecoregularizedinajointconvexlossfunction. The lossfunctioncanbeefficientlyoptimized inclosedformup-dates,whichallowsusto
incorporatealargenumberofimagedescriptorscheaply.Onseveralstandard real-worldbenchmark data sets, wedemonstrate
that FastTagmatches thecurrentstate-of-the-artintaggingqual-ity,yetreduces the trainingand testingtimesbyseveralorders
ofmagnitudeand haslowerasymptoticcomplexity

Published

2015-05-25

How to Cite

PranavkumarR.Joshi, & RiddhiV.Shah. (2015). Image Annotation and Retrieval Using Dual Classifier Formulation. International Journal of Advance Engineering and Research Development (IJAERD), 2(5), 424–426. Retrieved from https://ijaerd.com/index.php/IJAERD/article/view/877